On Kalimullin pairs

نویسندگان

  • Mingzhong Cai
  • Steffen Lempp
  • Joseph S. Miller
  • Mariya Ivanova Soskova
چکیده

We study Kalimullin pairs, a definable class (of pairs) of enumeration degrees that has been used to give first-order definitions of other important classes and relations, including the enumeration jump and the total enumeration degrees. We show that the global definition of Kalimullin pairs is also valid in the local structure of the enumeration degrees, giving a simpler local definition than was previously known. We prove that the typical enumeration degree is not half of a nontrivial Kalimullin pair, both in the sense of category and measure. Using genericity, we show that not all members of nontrivial Kalimullin pairs are half of a maximal Kalimullin pair. Finally, we construct such a set that has no maximal Kalimullin partner, making it qualitatively different from half of a maximal Kalimullin pair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Definability via Kalimullin Pairs in the Structure of the Enumeration Degrees

We give an alternative definition of the enumeration jump operator. We prove that the class of total enumeration degrees and the class of low enumeration degrees are first order definable in the local structure of the enumeration degrees.

متن کامل

Kalimullin Pairs of Σ2 Ω-enumeration Degrees

We study the notion of K-pairs in the local structure of the ωenumeration degrees. We introduce the notion of super almost zero sequences and investigate their structural properties. The study of degree structures has been one of the central themes in computability theory. Although the main focus has been on the structure of the Turing degrees and its local substructure, of the degrees below th...

متن کامل

The Least ∑-jump Inversion Theorem for n-families

Studying the Σ-reducibility of families introduced by [Kalimullin and Puzarenko 2009] we show that for every set X T ∅′ there is a family of sets F which is the Σ-least countable family whose Σ-jump is Σ-equivalent to X ⊕X. This fact will be generalized for the class of n-families (families of families of . . . of sets).

متن کامل

Algorithmic reducibilities of algebraic structures

Using admissibility for a computable model theory for uncountable structures

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computability

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016